Octahedral tilt phases in perovskite-like crystals with slabs containing an even number of octahedral layers

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys.: Condens. Matter 68219
(http://iopscience.iop.org/0953-8984/6/40/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.151
The article was downloaded on 12/05/2010 at 20:42

Please note that terms and conditions apply.

Octahedral tilt phases in perovskite-like crystals with slabs containing an even number of octahedral layers

K S Aleksandrov $\dagger \ddagger$ and J Bartolomé \ddagger
\dagger L V Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk, Russia
\ddagger Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain

Received 4 March 1994, in final form 3 June 1994

Abstract

The possible combinations of different octahedral tilts are considered for layered crystals having an even number of octahedral layers in perovskite-like slabs. A simple method to determine the resultant space-group symmetry is proposed, and the distorted phases are enumerated, both for a single kind of tilt around axes of the initial structure $G_{0}=14 / \mathrm{mmm}$ and for superpositions of different tilts in the slabs. Some of the tilt systems correspond to symmetry changes due to definite irreducible representations of G_{0}. In the single-layered crystals, $l=1$, $\mathrm{A}_{2} \mathrm{BX}_{4}$, some of the representations correspond to lattice modes observed experimentally. No such modes have been found yet for even-layered ($l=2 n$) crystals. A comparison with known experimental data is performed. The data obtained can be used for the proposition of 'trial models' in the course of structural analysis of related crystals.

1. Introduction

Perovskites and perovskite-like crystals consist of quite regular octahedra sharing corners. Structural phase transitions (PTS) in which tilts of these octahedra around their three diagonals occur have been widely investigated during the last two decades. Most attention has been paid to PTs taking place in the extensive families of crystals such as those of ABX_{3} of perovskite type [1-3], $\mathrm{A}_{2} \mathrm{BB}^{\prime} \mathrm{X}_{6}$ of elpasolite type $[3,4]$ and their relatives $\mathrm{A}_{2} \square \mathrm{BX}_{6}$ of $\mathrm{K}_{2} \mathrm{PtCl}_{6}$ type and $\square_{2} \mathrm{BB}^{\prime} \mathrm{X}_{6}$ of ReO_{3} type $[3,5,6]$. Here A and B are cations of the proper size and valency, and \square are vacancies in the A or B sites of the lattice of octahedra. As has been shown in previous papers, many complex sequences of structural PTs in these families can be described as superpositions of different coupled tilts of the octahedral BX_{6} groups. The resultant space-group symmetry of the possible distorted phases has been obtained and it has been shown that such a scheme can describe all experimentally observed symmetry changes at successive PTS as temperature or pressure are varied.

Similar crystallographic work has been done also for those crystal structures in which the main feature of the perovskites, namely the square layers of corner-linked BX_{6} octahedra, is preserved. These are the ABX 4 crystals of TlAlF_{4} type and $\mathrm{A}_{2} \mathrm{BX}_{4}$ crystals of $\mathrm{K}_{2} \mathrm{MgF}_{4}$ type [7-12]. Both structures contain single layers of perovskite-like octahedra. The different distorted phases obtained by superposition of the three kinds of tilt have been tabulated in these papers. Moroever, by means of group-theoretical analysis, it has been shown that some pTs due to tilts are determined by irreducible representations (irreps) of the initial space groups G_{0}. The librational phonon modes involving the octahedra in the crystal lattices transform in accordance to these irreps, and they correspond in many cases to the

Figure 1. Ideal tetragonal perovskite-like structures of the first members of the RuddlesdenPopper (a, b) and Aurivillius (c, d) series projected on the (100) 。 plane of $\mathrm{G}_{0}=14 / \mathrm{mmm}$ of $\mathrm{A}_{2} \mathrm{BX}_{4}$ and $\mathrm{A}_{2} \mathrm{BX}_{6}$ types.
soft modes that condense at the PTs. Some examples are RbAlF_{4} [13], $\mathrm{Rb}_{2} \mathrm{CdCl}_{4}[14,15]$, and $\mathrm{La}_{2} \mathrm{CuO}_{4}$ [16].

In some cases sequences of pTs take place, as in $\mathrm{La}_{2} \mathrm{CuO}_{4}$, where the initial hightemperature tetragonal phase distorts successively to orthorhombic and then to tetragonal symmetry as the temperature is lowered. This is due to the appearance and variation of the same tilts giving rise to the same two-component order parameter [9,10]. The symmetry of the distorted phases of $\mathrm{A}_{2} \mathrm{BX}_{4}$, obtained by two independent groups and compared to the available experimental data prior to 1988, is contained in [12].

The research on perovskite-like layered crystals became much more active because of the discovery of high-temperature superconductivity (HTSC) in $\mathrm{La}_{2} \mathrm{CuO}_{4}$, and Bi_{2} and Tl_{2} series of anion-deficient layered compounds. Some of the crystals are formed by single layers of octahedra and others by slabs of l layers of octahedra, with $l=2 n$ and $l=2 n+1$. These slabs alternate with NaCl -type, CaF_{2}-type, or more complex intermediate layers. Two well known families of crystals with general formula $\mathrm{AX}\left(\mathrm{A}^{\prime} \mathrm{BX}_{3}\right)_{t}$ for Ruddlesden-Popper phases [17] and $\mathrm{A}_{2} \mathrm{O}_{2}\left(\mathrm{~A}_{l-1}^{\prime} \mathrm{B}_{l} \mathrm{X}_{3 l+1}\right)$ for Aurivillius phases [18] are often met in oxides and halogenides ($\mathrm{X}=\mathrm{F}, \mathrm{Cl}$). The structures of the first two members of both series are shown in figure 1. In fact, these two series are also the forefathers of some HTSC series. In addition, there are many examples of structural, ferroelectric, antiferroelectric and antiferromagnetic PTs in crystals belonging to these series.

The first members of the series correspond to the structures of $\mathrm{K}_{2} \mathrm{MgF}_{4}$ and $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$ types. The crystallographic analysis of the PTs in terms of octahedral tilts for $\mathrm{A}_{2} \mathrm{BX}_{4}$ crystals is also applicable to the $\mathrm{A}_{2} \mathrm{BX}_{6}$ crystals of $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$ type. In both series the initial spacegroup symmetries are the same: $\mathrm{G}_{0}=I 4 / \mathrm{mmm}$ for $l=1, l=2 n, l=2 n+1$. It is easy to show that the symmetry of the distorted phases listed earlier for $\mathrm{A}_{2} \mathrm{BX}_{4}$ [9, 12] does not change when the structures contain perovskite-like slabs with $l=2 n+1$, although it is necessary to make some additions to the published tables. On the other hand, for structures where the perovskite-like slabs consist of an even number of octahedral layers ($l=2 n$), a new symmetry analysis of the distortions due to tilts is needed. This is the main purpose of the paper. The method of crystallographic analysis and the kinds of simple tilt are described in section 2; the main results of the analysis and some new (theoretical) cases of so called
distortional polytypism can be found in tables 1 and 2 and figures 5 and 6 (section 3). A comparison with known experimental data is made and possible ways to use the results obtained for the structural analysis of layered crystals are discussed in section 4.

2. Method of analysis; kinds of tilt

The problem of listing all possible symmetry changes of crystal structure of an even-layer slab, under the assumption that symmetry lowering is due to modes involving rotations of the octahedra, will be first addressed. As previously done for other cases [4, 8-10], to determine the space group of the distorted phase, G_{i}, we just depict the structure of the distorted phase and check the resulting symmetry elements. As previously done for other cases [4, 8-10], we just depict the structure of a distorted phase and then perform a direct determination of the space group G_{i}. Applying an additional simplification of the problem (see below, figure 2), it is rather easy to determine the symmetry elements of the distorted structure, not only for the simple cases of single tilts but also in the cases where superpositions of different distortions (different kinds of tilt) takes place. In some perovskite-like families of crystals the distortions due to tilts have also been analysed with the same method $[8,10]$, and the results have often been confirmed experimentally. As earlier, it will be assumed below, as a first approximation, that for small tilts the BX_{6} octahedra do not undergo further deformations.

Complex distortions are treated either as superpositions of the same kind of tilt but around different axes of the prototype structure, or of different kinds of tilt. We restrict ourselves here to cases when only one kind of tilt can occur around any axis of G_{0}. For simplicity, the A cations will be eliminated from the pictures, but we shall remember that their positions should be compatible with their site type within the resulting group G_{i}.

Another method to solve the problem of the G_{i} symmetry in $A_{2} B_{4}$-type crystals was used by Hatch and Stokes [11,12]. These authors have developed a computer program to determine the subgroups of G_{0} resulting both from single irreps of G_{0} and from the direct product of two irreps $\tau_{i} \otimes \tau_{j}$ corresponding to octahedral tilts in G_{0}. This method is theoretically more rigorous but it needs the analysis of direct products of irreps for the cases of coupled order parameters. Moreover, it is not easy to imagine the real changes of the atomic positions in G_{i} using only those irreps. Both methods lead to the same changes in symmetry, as has been shown many times [10,12], and their combination gives the most clear and rigorous results [12].

For layered perovskite-like crystals of ABX_{4} and $\mathrm{A}_{2} \mathrm{BX}_{4}$ types it was shown that three kinds of tilt are possible in a single square layer of the corner-linked octahedra. These are tilts around an axis normal to the layer plane, which will be labelled Ψ tilts (figure 2(c)) (they were previously called θ ones), and two kinds of tilt (Ψ and Φ), which can appear around the a_{0} and/or b_{0} axes of G_{0}. For Ψ tilts around b_{0} all octahedra in a column along b_{0} are turned in the same direction (figure 2(a)). The distortion of a layer (or slab) is denoted ($0 \Psi 0$): Ψ tilts along b_{0}, and the ($\Psi 00$) distortion is an equivalent one. For two simultaneous Ψ tilts along both a_{0} and b_{0} axes the symbol ($\left.\Psi \Psi 0\right)$ is used when both tilts are equal and the symbol ($\Psi_{1} \Psi_{2} 0$) for non-equal tilts. The Φ tilts are characterized by alternating angles of octahedral tilts along the rotation axis. Figure 2(b) corresponds to a $(0 \Phi 0)$ distortion of a layer. ($\Phi \Phi 0$) and ($\Phi_{1} \Phi_{2} 0$) distortions are also possible.

When $A_{2} B X_{4}$-type crystals have been analysed the distortions of G_{0} have been introduced by a double symbol, which represents the tilt systems in both layers (slabs), shifted in G_{0} by $1 / 2\left(a_{0}+b_{0}+c_{0}\right)$. For example, the distortions ($\left.\Phi 00\right)(\Phi 00)$ and ($\left.\Phi 00\right)(0 \Phi 0)$

C

d

Figure 2. Four kinds of tilt in layers and slabs of comer-linked octahedra: (a) ($0 \Psi 0$); (b) $(0 \Phi 0)$; (c) $\left(00 \Psi_{z}\right)$; (d) $\left(00 \Phi_{z}\right)$. The first three can appear in single-layered crystals of $\mathrm{A}_{2} \mathrm{BX}_{4}$ and $\mathrm{A}_{2} \mathrm{BX}_{\mathrm{G}}$ types.
are distinguished by the different axes of equal tilts (and by the G_{i} symmetry of course). These axes are parallel to a_{0} in the first case and mutually orthogonal in the second one.

When the G_{o} structure contains octahedral slabs $(l \neq 1)$ a fourth kind of tilt can exist: a Φ-tilt around the main axis of G_{0} (figure 2(d)). This leads to different space groups in crystals with even layers $l=2 n$ because ($00 \Phi_{z}$) tilts (Φ tilts along the c axis) do not keep the mirror plane orthogonal to the main axis of G_{0}. On the other hand, in the case of Ψ and Φ tilts the same mirror plane (between the octahedral layers in the slabs with $l=2 n$) is maintained. The situation is exactly opposite to the slabs with $l=2 n+1$ where the m plane is lost for Ψ and Φ tilts but exists for $(00 \theta)=\left(00 \Phi_{z}\right)$ ones. (It is worthwhile to mention here again that in previous papers the symbol θ was used instead of Ψ_{z}). One should remember also that Ψ and Ψ_{z}, Φ and Φ_{z} tilts are tilts of the same kind, but tilts in both pairs inevitably belong to different irreps of G_{0}. It was shown earlier for crystals with $l=1[9,12]$ that some distortions due to Ψ_{z} and Φ tilts are determined by two-dimensional irreps $\tau_{7}\left(\mathrm{X}_{2}^{+}\right), \tau_{3}\left(\mathrm{X}_{3}^{+}\right)$and $\tau_{5}\left(\mathrm{X}_{4}^{+}\right)$of G_{0} in Kovalev, and Miller and Love notations [19,20]. It will be shown later that a similar situation takes place in the crystals under present consideration.

3. Results of the crystallographic analysis for crystals with slabs containing an even number of octahedral layers

Independently of the number of octahedral layers in the slabs, the initial space group for both series of crystals (figure 1) is $\mathrm{G}_{\mathrm{o}}=\mathrm{D}_{4 \mathrm{~h}}^{17}-14 / \mathrm{mmm}(Z=2)$, where the slabs are shifted by half of the body diagonal of the I-centred unit cell. The (001) projection of superimposed slabs is shown in figure 3(a). The octahedra of the first (upper) slab are depicted by full lines and those of the second (lower) one at $z=1 / 2 c_{0}$ by broken lines. The A cations were omitted from the pictures here and below.

Figure 3. The method for simplification of the crystallographic analysis. The (001) projection of two neighbour slabs; A and A^{\prime} cations are omitted. The octahedra of the upper layer are drawn in full lines, those of the lower slab by broken lines. (a) Real structure: (b) simplified octahedral structure obtained by contracting all octahedra with respect to their centres. The unit cell of G_{0} is shown by dotted lines. The dots between octahedra correspond to the points of linkage in the real structure.

It becomes clear from inspection of figure 3(a) that the introduction of octahedral tilts will lead to further complications of the picture, and that the determination of the resulting symmetry will be a sophisticated problem. Therefore, an artificial method to simplify the problem was used. Each octahedron was contracted by half with respect to its centre (figure 3(b)). The points between the contracted octahedra in this figure mark the contact points of the octahedral vertices. This method simplifies the conception of the structure and does not change the symmetry of the G_{0} phase.

With this artificially simplified 'structure' it is much easier to introduce any kinds of tilt and consider their superpositions. Of course it is necessary to remember that octahedra are corner linked in both slabs. Therefore the phases of tilts in the neighbouring octahedra should correspond to the ones in the linked slab for each definite kind of tilt ($\left.\Psi, \Phi, \Psi_{z}, \Phi_{z}\right)$.

3.1. Tilts of the $\left(00 \Psi_{z}\right)$ kind

These are determined by the two-dimensional $\tau_{7}\left(\mathrm{X}_{2}^{+}\right)$irrep of the K_{13} star of G_{0} [12]. Therefore three different distortions due to Ψ_{z} tilts may appear in the structure. The simplest distortion is shown in figure $4(a)$: the Ψ_{z} tilts are equal in both slabs: $\left(00 \Psi_{z}\right)\left(00 \Psi_{z}\right)$ and the distorted structure belongs to the space group $\mathrm{D}_{2 \mathrm{~h}}^{18}-B b c m$ with $Z=4$ and unit-cell
parameters $a=\sqrt{2} a_{0}, b=\sqrt{2} b_{0}, c=c_{0}$. Although the standard symbol of the group-Cmca-is used in table 1, the order of the unit-cell parameters is changed there. If the PT is $\mathrm{D}_{4 / \mathrm{h}}^{17} \rightarrow \mathrm{D}_{2 \mathrm{~h}}^{18}$, then only one component of the two-component order parameter, for example $(0, \eta)$ will appear. When the signs of the Ψ_{z} tilts in any slab are changed, the space group of G_{i} is the same, but the unit cell is centred in another [110] plane (this corresponds to the ($\eta, 0$) component of the order parameter). If the two distortions are superimposed, the values of the Ψ_{z} tilts in one of the slabs are doubled and compensate to zero on the other: $\left(002 \Psi_{z}\right)(000)$. The coefficient will be omitted from table 1 in this case. The order parameter has both components identical: (η, η). The third case (η_{1}, η_{2}) with non-equal tilts in the slabs leads to other changes in symmetry (see tables 1 and 3). The same space groups appear due to Ψ_{z} tilts in structures with $l=2 n+1$ and $l=2 n$ layers in perovskite-like slabs.

a

b

Figure 4. The structural distortions due to Φ_{z} and Ψ_{z} tilts: (a) the $\left(00 \Psi_{z}\right)\left(00 \Psi_{z}\right)$ tilt system, equal tilts around the c_{0} axis in both slabs; (b) the $\left(00 \Phi_{z}\right)\left(00 \Phi_{z}\right)$ system. Some symmetry elements of space groups are shown.

3.2. Tilts of the $\left(00 \Phi_{z}\right)$ kind

These lead to three different distortions of G_{0}. One of them, $\left(00 \Phi_{z}\right)\left(00 \Phi_{z}\right)$, is shown in figure 4(b). It corresponds to $G_{1}=D_{2 h}^{22}=A b a a, Z=4, a=\sqrt{2} a_{0}, b=\sqrt{2} b_{0}, c=c_{0}$ (the standard symbol Ccca is used in table 1). The symmetry of the other two phases with $\left(002 \Phi_{z}\right)(000)$ and $\left(00 \Phi_{1 z}\right)\left(00 \Phi_{2 z}\right)$ systems of tilts is listed in table 1. Φ_{z} tilts are induced by a τ_{2} irrep of G_{0} (see table 3).

3.3. Tilts of the Ψ and Φ kind

The situations with the rotation axes of the octahedra in the slab plane lead to more numerous tilt systems, which will be considered below for the case of Φ tilts. When a one-component Φ tilt takes place in both slabs the symmetry of the resultant space group G_{i} depends both on the phases of the tilts of the adjacent slabs, and on the axes of the tilts in the

Table 1. The symmetry of distorted phases arising due to octahedral tilts in crystals with an even number of layers in the perovskite-like slabs $(l=2 n)$.

No	Symbols of tilts		Space group	Unit cell parameters			Z	Irrep of G_{0}	Remarks
	1st slab	2nd slab		a	b	c			
1	000	000	$\mathrm{D}_{4 \mathrm{~h}}^{17}-14 / \mathrm{mmm}$	a_{0}	$a_{(0)}$	c_{0}	2		
2	$\begin{aligned} & 00 \Psi_{z} \\ & 00 \Psi_{z} \end{aligned}$	$\begin{aligned} & 00 \Psi_{2} \\ & 00 \bar{\Psi}_{2} \end{aligned}$	$\mathrm{D}_{2 \mathrm{~h}}^{18} \mathrm{Cmca}$	c_{0}	$\sqrt{2} a_{0}$	$\sqrt{2} a_{0}$	4	τ_{7}	Figure 4(a)
3	$00 \Psi_{z}$	000	$\mathrm{D}_{4 \mathrm{~h}}^{5}-P 4 / \mathrm{mbm}$	$\sqrt{2} a_{0}$	$\sqrt{2} a_{0}$	c_{0}	4	τ_{7}	
4	$00 \Psi_{z 1}$	$00 \Psi_{z 2}$	$\mathrm{D}_{2 \mathrm{~h}}^{9}-\mathrm{Pbam}$	$"$	"	\%	4	τ_{7}	
5	$00 \Phi_{z}$	$00 \Phi_{z}$	$\mathrm{D}_{2 \mathrm{~h}}^{22}$-Ccca	$\sqrt{2} a_{0}$	c_{0}	$\sqrt{2} a_{0}$	4	τ_{2}	Figure 4(b)
6	$00 \Phi_{z}$	000	$\mathrm{D}_{4 \mathrm{~h}}^{3}-\mathrm{P} 4 / \mathrm{nbm}$	$\sqrt{2} a_{0}$	$\sqrt{2} a_{0}$	c_{0}	4	τ_{2}	
7	$00 \Phi_{z 1}$	$00 \Phi_{z 2}$	$\mathrm{D}_{2 \mathrm{~h}}^{4}-\mathrm{Pban}$	"	"	"	4	τ_{2}	
8	$\begin{aligned} & \Phi 00 \\ & \Phi_{1} \Phi_{2} 0 \end{aligned}$	$\begin{aligned} & \Phi 00 \\ & \Phi_{1} \Phi_{2} 0 \end{aligned}$	$\mathrm{C}_{2 \mathrm{~h}}^{3}-A 112 / m$	"	"	"	4	-	Figure 5(a)
9	$\Phi 00$	$0 \bar{\Phi} 0$	$\mathrm{D}_{4 \mathrm{~h}}^{10}-\mathrm{P} 4_{2} / \mathrm{mcm}$	$"$	"	$"$	4	τ_{6}	Figure 5(b)
10	ФФ0	$\bar{\Phi} \bar{\Phi} 0$	$\mathrm{D}_{2 \mathrm{~h}}^{21}$-Cmma	$\sqrt{2} a_{0}$	c_{0}	$\sqrt{2} a_{0}$	4	τ_{6}	Figure 6(c)
11	$\Phi_{1} \Phi_{2} 0$	$\bar{\Phi}_{2} \bar{\Phi}_{1} 0$	$\mathrm{D}_{2 \mathrm{~h}}^{3}-\mathrm{Pccm}$	$\sqrt{2} a_{0}$	$\sqrt{2} a_{0}$	c_{0}	4	τ_{6}	
12	$\Phi 00$	$0 \Phi 0$	$\mathrm{D}_{4 \mathrm{~h}}^{14}-\mathrm{P}_{2} / \mathrm{mnm}$	"	"	"	4	τ_{4}	Figure 5(c)
13	$\Phi \Phi 0$	$\Phi \Phi 0$	$\mathrm{D}_{2 \mathrm{~h}}^{17}-\mathrm{Cmcm}$	c_{0}	$\sqrt{2} a_{0}$	$\sqrt{2} a_{0}$	4	τ_{4}	Figure 6(b)
14	$\Phi_{1} \Phi_{2} 0$	$\Phi_{2} \Phi_{1} 0$	$\mathrm{D}_{2 \mathrm{~b}}^{\mathrm{I}}-P \mathrm{Pnm}$	$\sqrt{2} a_{0}$	$\sqrt{2} a_{0}$	c_{0}	4	τ_{4}	
15	$\Phi \Phi 0$	$\Phi \bar{\Phi} 0$	$\mathrm{D}_{4 \mathrm{~h}}^{4}-P 4 / n n c$	"	"	"	4	- .	Figure 6(a)
16	$\Phi_{1} \Phi_{2} 0$	$\Phi_{1} \stackrel{\Phi}{\Phi}_{2} 0$	$\mathrm{C}_{2 \mathrm{~h}}^{1}-P 112 / m$	"	"	" .	4	-	
17	$\Psi 00$	$\Psi 00$	$\mathrm{D}_{2 \mathrm{~h}}^{13}-P_{m m n}$	$2 a_{0}$	a)	c_{0}	4	-	
18	$\Psi 00$	$0 \Psi 0$	$\mathrm{D}_{4 \mathrm{~h}}^{9}-\mathrm{P}_{2} / \mathrm{mmc}$	$2 a_{0}$	$2 a_{0}$	c_{0}	8	-	
19.	$\begin{aligned} & \Psi \Psi 0 \\ & \Psi \Psi 0 \end{aligned}$	$\begin{aligned} & \Psi \bar{\Psi} 0 \\ & \Psi \Psi 0 \end{aligned}$	$\mathrm{D}_{2 \mathrm{~h}}^{17}$ - Cmcm	$2 \sqrt{2} a_{0}$	$2 \sqrt{2} a_{0}$	c_{0}	16	-	
20	$\Psi_{1} \Psi_{2} 0$	$\Psi_{1} \Psi_{2} 0$	$\mathrm{C}_{2 \mathrm{~h}}^{2}-P 112_{1} / \mathrm{m}$	$2 a_{0}$	$2 a_{0}$	c_{0}	8	-	

Figure 5. Three different tilt systems due to ($\Phi 00$) tilts in a slab: (a) the ($\Phi 00$) $(\Phi 00)$ system; (b) the ($\Phi 00)(0 \bar{\Phi} 0)$ system; (c) the $(\Phi 00)(0 \Phi 0)$ system.
symmetry elements of the space groups are included in figures 5 and 6 to aid the reader to distinguish the cases with different tilt axes and phases. In the first case, figure 5(a), the rotation axes of the Φ tilts are parallel in adjacent slabs and, irrespective of their phases, the tilt system ($\Phi 00$) ($\Phi 00$) leads to the A-centred monoclinic group $\mathrm{C}_{2 \mathrm{~h}}^{3}$ (see table 1). The same group is produced for $\left(\Phi_{1} \Phi_{2} 0\right)\left(\Phi_{1} \Phi_{2} 0\right)$ distortion when Φ tilts around a_{0} and b_{0} are non-equal and are parallel in both slabs. When Φ tilts occur around a_{0} in the first slab and b_{0} in the adjacent one, the symmetry of the distorted structure depends on the tilt phases, as is clearly seen in figure $5(\mathrm{~b}, \mathrm{c})$. Figure $5(\mathrm{~b})$ corresponds to the $(0 \Phi 0)(0 \vec{\Phi} 0)$ tilt system and to $G_{1}=\mathrm{D}_{4 \mathrm{~h}}^{10}-P 4_{2} / \mathrm{mcm}, Z=4$. The tilts of ($\Phi 00$) $(0 \Phi 0)$ type in figure 5 (c) leads to another tetragonal group $\mathrm{G}_{1}=\mathrm{D}_{4 \mathrm{~h}}^{14}-P 4_{2} / m n m, Z=4$. The symmetry change $\mathrm{D}_{4 \mathrm{~h}}^{17}(Z=2) \rightarrow \mathrm{D}_{4 \mathrm{~h}}^{14}(Z=4)$ corresponds to the appearance of two equal components (η, η) of the order parameter, which transforms in accordance with the $\tau_{4}\left(\mathrm{X}_{3}^{-}\right)$irrep of the K_{13} star [21]. The tilt systems ($\Phi 00$) $(0 \bar{\Phi} 0)$, $(\Phi \Phi 0)(\bar{\Phi} \Phi \bar{\Phi})$ and $\left(\Phi_{1} \Phi_{2} 0\right)\left(\Phi_{2} \Phi_{1} 0\right)$ are induced by τ_{6} of G_{0} (see table 3).

The distortion ($\Phi \Phi 0)\left(\Phi \bar{\Phi} 0\right.$), with orthogonal $[110]_{0}$ axes of the Φ tilts in the slabs, also leads to a tetragonal structure $\mathrm{D}_{4 \mathrm{~b}}^{4}$ and the symmetry does not depend on the tilt phases: $(\Phi \Phi 0)(\bar{\Phi} \Phi 0)$ is also tetragonal. In contrast ($\Phi \Phi 0)(\Phi \Phi 0)$, figure $6(\mathrm{~b})$, and ($\Phi \Phi 0)(\bar{\Phi} \bar{\Phi} 0)$, figure 6 (c), tilt systems with parallel axes lead to the different space groups $\mathrm{D}_{2 \mathrm{~b}}^{17}-\mathrm{Cmcm}$, $Z=4$, and $D_{2 h}^{21}-C m m a, Z=4$, correspondingly. These groups are B and A centred as is seen from figure $6(\mathrm{~b}, \mathrm{c})$. This means that the centring of the unit cell depends on the phases of the Φ tilts in adjacent slabs, but not on the odd or even number of octahedral layers in the slabs as stated repeatedly by Australian authors [22-25]. The tilt system ($\Phi \Phi(\Phi)$ ($\Phi \Phi 0$) corresponds to the appearance of a single component $(\eta, 0)$ or $(0, \eta)$ of the same order parameter due to the $\tau_{4}\left(\mathrm{X}_{3}^{-}\right)$irrep [21]. With non-equal components of Φ tilts in a slab ($\eta_{1} \neq \eta_{2} \neq 0$) the orthorhombic group becomes $\mathrm{D}_{2 \mathrm{~h}}^{12}-P n n m$ with $Z=4$. The other combinations of tilts and tilt systems due to Ψ tilts are presented in table 1.

Figure 6. Three different tilt systems due to ($\Phi \Phi 0$) tilts in a slab: (a) the ($\Phi \Phi 0)(\Phi \bar{\Phi} 0)$ system; (b) the ($\Phi \Phi 0)(\Phi \Phi 0)$ system; (c) the ($\Phi \Phi 0)(\bar{\Phi} \bar{\Phi} 0)$ system.

Figure 7. Two polar structures due to superpositons of (a) ($\Phi 00$)($0 \Phi 0$) and (b) ($\Phi \Phi 0)(\Phi \Phi 0)$ with the $\left(00 \Psi_{z}\right)\left(00 \Psi_{z}\right)$ system of tilts (see the text).

3.4. Superposition of different kinds of tilt $\left(\Psi_{z}, \Psi, \Phi_{z}, \Phi\right)$

This leads to many complicated distortions of G_{0}. In contrast to crystals with add-number perovskite-like slabs [9,10], distortions in crystals with $l=2 n$ often lead to the loss of a symmetry centre. Two examples are shown in figure $7(\mathrm{a}, \mathrm{b})$ for $\left(\Phi 0 \Psi_{z}\right)\left(0 \Phi \Psi_{z}\right)$ and $\left(\Phi \Phi \Psi_{z}\right)\left(\Phi \Phi \Psi_{z}\right)$ tilt systems, respectively. The structures in figure 7 are the results of superpositions of distortions presented in figure 5(c) and 6(b) with the $\left(00 \Psi_{z}\right)\left(00 \Psi_{z}\right)$ tilt system similar to figure 4 (a). Both structures are polar, with the main axis along b in figure 7 (see table 2). They may appear in the course of successive (or triggered) PTs where two different order parameters participate. As was mentioned above, the parameters can be considered as tilts due to the condensation of the soft librational lattice modes τ_{4} and τ_{7} [10-12,21].

It is worthwhile to mention that other polar phases can appear when the same Φ-tilt systems are superimposed with $\left(00 \Psi_{z}\right)(000)$ or $\left(00 \Psi_{1 z}\right)\left(00 \Psi_{2 z}\right)$ systems. In the case of $\left(\Phi 0 \Psi_{z}\right)(0 \Phi 0)$ we obtain the C-centred orthorhombic space group $C_{2 v}^{14}-C m m 2, Z=8$ with the polar axis along one of the [110] directions of G_{0}. When $\Psi_{z} \rightarrow 0$ we obtain the transformation from $\mathrm{C}_{2 \mathrm{v}}^{14}$ to $\mathrm{D}_{4 \mathrm{~h}}^{14}$ (figure 5(c)). Another case ($\Phi \Phi \Psi_{z}$) ($\Phi \Phi 0$) leads to the primitive group $C_{2 v}^{2}-P m c 2_{1}, Z=4$, and the polar axis is now parallel to [110] (see table 2). This distortion can also appear in some sequences of structural PTs.

It is interesting to mention also that the structure in figure 7(b) becomes non-polar when the sign of the Ψ tilt is changed in one of the slabs (see table 2). Similar polar-non-polar transformation takes place with the $\left(\Phi \Phi \Psi_{z}\right)\left(\bar{\Phi} \bar{\Phi} \Psi_{z}\right)$ system, but does not exist with $\left(\Phi 0 \Psi_{z}\right)\left(0 \Phi \Psi_{z}\right)$ and $\left(\Phi 0 \Psi_{z}\right)\left(0 \Phi \Psi_{z}\right)$ tilts. Both these latter structures are polar (see figure 7(a) and table 2). The structure in figure 7(b) will be discussed below in more detail. We did not consider many other examples of superpositions: $\left(00 \Psi_{z}\right)(000) ;\left(00 \Psi_{1 z}\right)\left(0 \Phi \Psi_{2 z}\right)$;

Table 2. Structure distortions of G_{0} due to superposition of different kinds of tilt (structures with even layers in slabs, $l=2 n$).

No	Symbols of tits		Space group	Unit cell parameters			z	$\begin{aligned} & \text { Irrep } \\ & \text { of } G_{0} \end{aligned}$	Remarks
	1st slab	2nd slab		a	b	c			
1	$\Psi \Phi 0$ $\Psi 0 \Psi_{z}$ $\Psi \Psi \Psi_{z}$	$\Psi \Phi 0$ $\Psi 0 \Psi_{z}$ $\Psi \Psi \Psi_{z}$	$\mathrm{C}_{2 \mathrm{~h}}^{2}-\mathrm{Pl}^{1} 12_{1 / m}$	$2 a_{0}$	$2 a_{0}$	c_{0}	8		
2	$\Psi \Phi 0$	$\Phi \Psi 0$	$\begin{aligned} & \mathrm{D}_{2 \mathrm{~h}}^{20}-\mathrm{Cccm} \\ & \mathrm{C}_{2 \mathrm{~h}}^{\mathrm{L}}-P 112 / m \end{aligned}$	$2 \sqrt{2} a_{0}$ $2 a_{0}$	$\begin{aligned} & 2 \sqrt{2} a_{0} \\ & 2 a_{0} \end{aligned}$	c_{0} c_{0}	16		
3	$\begin{aligned} & \Phi 0 \Psi_{z} \\ & \Phi_{1} \Phi_{2} \Psi_{z} \end{aligned}$	$\Phi 0 \Psi_{z}$ $\Phi_{1} \Phi_{2} \Psi_{z}$	$\mathrm{C}_{2 \mathrm{~h}}^{2}-P_{112} / \mathrm{m}$	$\sqrt{2} a_{0}$	$\sqrt{2} a_{0}$	c_{0}	4		
4	$\begin{aligned} & \Phi 0 \Psi_{z} \\ & \Phi 0 \Psi_{z} \end{aligned}$	$0 \Phi \Psi_{z}$ $0 \Phi \bar{\Psi}_{z}$	$C_{2 v}^{7}-P m n 2_{1}$	c_{0}	$\sqrt{2} a_{0}$	$\sqrt{2} a_{0}$	4	$\tau_{4} \otimes \tau_{7}$	Figure 7(a)
5	$\Phi \Phi \Psi_{z}$	$\Phi \Phi \bar{\Psi}_{z}$	$\mathrm{D}_{2 \mathrm{~h}}^{16}$-Pnma	$\sqrt{2} a_{0}$	$\sqrt{2} a_{i 1}$	c_{0}	4	$\tau_{4} \otimes \tau_{7}$	
6	$\Phi \Phi \Psi_{z}$	$\Phi \Phi \Psi_{z}$	$\mathrm{C}_{2 \mathrm{y}}^{12}-\mathrm{Cmc} 2_{1}$	$\sqrt{2} a_{0}$	c_{0}	$\sqrt{2} a_{0}$	4	$\tau_{4} \otimes \tau_{7}$	Figure 7(b)
7	$\Phi_{1} \Phi_{2} \Psi_{z}$	$\Phi_{2} \Phi_{1} \Psi_{z}$	$\mathrm{C}_{2 \mathrm{v}}^{7}-\mathrm{Pmm2}_{1}$	c_{0}	$\sqrt{2} a_{0}$	$\sqrt{2} a_{0}$		$\tau_{4} \otimes \tau_{7}$	
8	$\Phi 0 \Psi_{z}$	$0 \Phi 0$	$\mathrm{C}_{2}^{14}-\mathrm{Amm} 2$	c_{0}	$2 a_{0}$	$2 a_{0}$	8	$\tau_{4} \otimes \tau_{7}$	
9	$\Phi \Phi \Psi_{z}$	$\Phi \Phi 0$	$\mathrm{C}_{2 \mathrm{v}}^{2}-\mathrm{Pmc} 2_{1}$	c_{0}	$\sqrt{2} a_{0}$	$\sqrt{2} a_{0}$	4	$\tau_{4} \otimes \tau_{7}$	
10	$\Phi 0 \Psi_{z}$	$0 \bar{\Phi} \Psi_{z}$	$\mathrm{C}_{2 v}^{4}-\mathrm{Pma2}$	"	"	"	4	$\tau_{6} \otimes \tau_{7}$	
11	$\Phi \Phi \Psi_{z}$	$\Phi \bar{\Phi} \Psi_{z}$	$\mathrm{D}_{2 \mathrm{~h}}^{\mathrm{It}}$-Pbcm	"	"	"	4	$\tau_{6} \otimes \tau_{7}$	
12	$\Phi \Phi \Psi_{z}$	$\bar{\Phi} \bar{\Phi} \bar{\Psi}_{z}$	$\mathrm{C}_{2 \mathrm{r}}^{15}$-Abm2	"	"	"	4	$\tau_{5} \otimes \tau_{7}$	
13	$\Phi_{1} \Phi_{2} \Psi_{z}$	$\bar{\Phi}_{1} \Phi_{2} \Psi_{z}$	$\mathrm{C}_{2 v}^{4}-\mathrm{Pma} 2$	"	"	"	4	$\tau_{6} \otimes \tau_{7}$	
14	$\Psi 0 \Psi_{z}$ $\Psi \Psi \Psi_{z}$	$0 \Psi \Psi_{z}$ $\bar{\Psi} \bar{\Psi} \Psi_{z}$	$\mathrm{C}_{2 v}^{16}-$ Ama 2	$2 \sqrt{2} a_{0}$	$2 \sqrt{2} a_{0}$	c_{0}	16		
15	$\begin{aligned} & \Phi 0 \Phi_{z} \\ & \Phi_{1} \Phi_{2} \Phi_{z} \end{aligned}$	$\begin{aligned} & 0 \Phi \Phi_{z} \\ & \Phi_{2} \Phi_{1} \Phi_{z} \end{aligned}$	$C_{2 \mathrm{~L}}^{5}-P 2_{1} / n 11$	$\sqrt{2} a_{0}$	$\sqrt{2} a_{0}$	c_{0}	4	$\tau_{4} \otimes \tau_{2}$	
16	$\Phi \Phi \Phi_{z}$	$\Phi \Phi \Phi_{z}$	$\mathrm{C}_{2 \mathrm{~h}}^{6}-B 2 / b 11$	"	"	"	4	$\tau_{4} \otimes \tau_{2}$	
17	$\begin{aligned} & \Phi 0 \Phi_{z} \\ & \Phi_{1} \Phi_{2} \Phi_{z} \end{aligned}$	$\begin{aligned} & 0 \bar{\Phi} \Phi_{z} \\ & \bar{\Phi}_{2} \bar{\Phi}_{1} \Phi_{z} \end{aligned}$	$\mathrm{C}_{2 \mathrm{~h}}^{4}-\mathrm{P} 12 / \mathrm{c}$	"	"	"	4	$\tau_{6} \otimes \tau_{2}$	
18	$\Phi \Phi \Phi_{z}$	$\bar{\Phi} \bar{\Phi} \Phi_{z}$	$\mathrm{D}_{2 \mathrm{~h}}^{8}-$ Pcca	"	"	"	4	$\tau_{6} \otimes \tau_{2}$	
19	$\Phi \Phi \Phi_{z}$	ФФ0	$\mathrm{C}_{2 \mathrm{~h}}^{4}-\mathrm{P} 2 / \mathrm{cl1}$	c_{0}	$\sqrt{2} a_{0}$	$\sqrt{2} a_{0}$	4	$\tau_{4} \otimes \tau_{2}$	
20	$\Phi 0 \Phi_{z}$	$0 \Phi 0$	$\mathrm{C}_{2 \mathrm{~h}}^{3}-\mathrm{C} 2 / \mathrm{ml1}$	$2 a_{0}$	$2 a_{0}$	c_{0}	8	$\tau_{4} \otimes \tau_{2}$	
21	$\Psi 0 \Phi_{z}$ $\Psi \Phi \Phi_{z}$	$0 \Psi \Phi_{z}$ $\Phi \Psi \Phi_{z}$	$\mathrm{C}_{2 \mathrm{~h}}^{6}-\mathrm{C} 12 / \mathrm{cl}$	$2 \sqrt{2} a_{0}$	$2 \sqrt{2} a_{0}$	c_{0}	16		
22	$\Psi 0 \Phi_{z}$	$\Psi 0 \Phi_{z}$	$\mathrm{C}_{2 \mathrm{~h}}^{5}-P 112_{1} / a$	$2 a_{0}$	200	c_{0}	8		

$\left(00 \Phi_{z}\right)(000)$ and $\left(00 \Phi_{1 z}\right)\left(0 \Phi \Phi_{2 z}\right)$ tilt systems with many other Φ and Ψ tilts along a_{0} and b_{0} axes. Most cases are not too complicated to develop, if needed.

At first glance it is surprising that polar phases appear due to superpositions of centrosymmetric primitive distortions, but this does not contradict the well known Curie principle. When two or more combinations of symmetry elements (two or more space groups, a space group and an external field, etc) are superimposed the combined system retains only the common symmetry elements located at the same lattice sites. Similar noncentrosymmetrical cases have been also met in the distorted perovskites and in $\mathrm{A}_{2} \mathrm{BX}_{4}$-type crystals $[3,10]$.

Many other cases of complex distortions have been considered. Some of them are listed in table 2. We restrict ourselves to the cases where either one or zero tilts of any kind may appear along a_{0}, b_{0} and c_{0} axes of G_{0}. Some of these cases such as $\left(\Psi_{1} \Psi_{2} \Psi_{z}\right)\left(\Psi_{1} \Psi_{2} \Psi_{z}\right)$ and $\left(\Psi \Phi \Psi_{z}\right)\left(\Psi \Phi \Psi_{z}\right)$ lead to $P \overline{1}$ or $P 1$ groups and large unit cells. These cases are not presented in table 2. We did not consider either the superpositions of Φ and Ψ tilts along the same (a_{0} or b_{0}) axes or tilt systems with different sets of tilts in adjacent slabs.

4. Discussion

As was mentioned in section 1, there exist two methods to perform the symmetry analysis of structure distortions in this type of crystal. The group-theoretical method gives all possible group-subgroup changes due to active irreps of G_{0} [29], but the determination of atomic positions in the distorted structure G_{i} needs a more sophisticated study and is not usually performed. It has been done only in a restricted number of cases [26,27], when the structure changes corresponding to $G_{0} \rightarrow G_{i}$ are known from experiment or other sources.

On the other hand, the crystallographic method used in this paper enumerates all possible symmetry changes due to the restricted number of definite simple distortions: four kinds of tilt in our case. The results of the analysis have no direct relation to the group-theoretical ones and it is impossible to determine by which active representation of G_{0} the tilt system is induced. However, both methods make tables of the possible symmetry changes of G_{o} redundant. The comparison of these tables helps to find the active irreps that determine the structural changes due to the definite distortion in the crystal under consideration.

4.1. Sequences of PTs

Fortunately, the group-theoretical analysis of $\mathrm{G}_{0}=\mathrm{D}_{4 \mathrm{~h}}^{17}-14 / \mathrm{mmm}$ has been performed many times [11, 12, 26,27]. In most cases these papers have been devoted to the study of the structural phase transitions in the $\mathrm{A}_{2} \mathrm{BX}_{4}$ perovskite-like crystals. As far as we know, full tables of the G_{0} subgroups have been enumerated only in sources to which it is difficult to have access $[28,41]$. For our purpose, the symmetry changes induced by the irreps of the $\mathrm{K}_{19}(\mathrm{X})$ star of G_{0} are needed. These data, first published in [28] and partially reproduced in [30], are shown in table 3.

In order to summarize the resulting phases due to tilts in perovskite-like crystals with odd $(l=2 n+1)$ and even $(l=2 n)$ layers in slabs of octahedra, the last column in table 3 was added. It is shown there, for crystals with $l=2 n+1$ and $l=2 n$, which kind of tilt induces the symmetry changes equivalent to those corresponding to definite $\tau_{i}\left(\mathrm{~K}_{13}\right)$, in Kovalev's notation [19]. From inspection of the table one easily verifies that the tilt systems due to Φ and Ψ_{z} tilts in crystals with $l=2 n+1$ give the same symmetry changes as τ_{3}, τ_{5} and τ_{7}. The Φ_{z} tilts in crystals with $l=2 n$ belong to τ_{2} but in the cases of odd layers in slabs Φ_{z} tilts belong to the same irrep as Ψ_{z} ones and lead to the same symmetry changes. Irrep τ_{7} is met three times at the X point of the Brillouin zone of $\mathrm{A}_{2} \mathrm{BX}_{4}$ crystals [26] and probably Φ_{z} and Ψ_{z} tilts in multilayered crystals with $l=2 n+1$ are determined by different modes of the same symmetry.

As for the crystals with an even number of octahedral layers in the slabs, the tilt systems due to Ψ_{z}, Φ_{z} and Φ kinds lead to the same symmetry changes as τ_{7}, τ_{2} and τ_{4}, τ_{6}, respectively. As was seen in table 1 and figures 5 and $6, \Phi$ tilts due to changes of the tilt phases in the neighbouring slabs can lead to two different sequences of PTs. These are new cases of the distortional polytypism considered earlier [8,10]. The PT sequences that can be induced by τ_{4} and τ_{5} are

$$
\begin{align*}
& \mathrm{D}_{4 \mathrm{~h}}^{17} \frac{\tau_{4}(0, \eta)}{\mathrm{D}_{2 \mathrm{~h}}^{17}} \frac{\tau_{4}(\eta, \eta)}{} \mathrm{D}_{4 \mathrm{~h}}^{14} \underline{\tau_{4}\left(\eta_{1}, \eta_{2}\right)} \mathrm{D}_{2 \mathrm{~h}}^{12} \tag{1}\\
& \mathrm{D}_{4 \mathrm{~h}}^{17} \stackrel{\tau_{6}(0, \eta)}{ } \mathrm{D}_{2 \mathrm{~h}}^{21} \stackrel{\tau_{6}(\eta, \eta)}{ } \mathrm{D}_{4 \mathrm{~h}}^{10} \underline{\tau_{6}\left(\eta_{\mathrm{t}}, \eta_{1}\right)} \mathrm{D}_{2 \mathrm{~h}}^{3} \tag{2}
\end{align*}
$$

Both (1) and (2) correspond to transformations between tetragonal-orthorhombic-tetragonal-orthorhombic phases. They lead to the same unit-cell multiplication and
Table 3. The symmetry of distorted phases induced by irreducible representations of the $\mathrm{K}_{13}(\mathrm{X})$ star in crystals belonging to $\mathrm{G}_{0}=14 / \mathrm{mmm}$ for $l=2 n$ and $l=2 n+1$.

$\bar{\eta}=(0, \eta)$		$\bar{\eta}=(\eta, \eta)$		$\bar{\eta}=\left(\eta_{1}, \eta_{2}\right)$		Kinds of tilt in crystals with I octahedral layers in slabs	
G_{i}	Orientations of planes in G_{0}	G_{i}	Orientations of planes in G_{0}	G_{i}	Orientations of planes in G_{0}		
$\tau_{1} \mathrm{D}_{2 \mathrm{~h}}^{19}-\mathrm{Cmmm}$	m_{1}-(001); m_{2}-(110)	$\mathrm{D}_{4 \mathrm{lh}}^{1}-\mathrm{P4} / \mathrm{mmm}$	m_{1}-(001); m_{2}-(100)	$\mathrm{D}_{2 \mathrm{~h}}^{1}-\mathrm{Pmmm}$	m_{1}-(110); m_{2}-(1 I 0)	-	
$\tau_{2} \quad \mathrm{D}_{2 \mathrm{~h}}^{22}-\mathrm{Ccca}$	$c_{1}-(001) ; c_{2}$-(110)	$\mathrm{D}_{4 \mathrm{~h}}^{3} \cdots P 4 / \mathrm{nbm}$	$b-(110) ; m$-(100)	$\mathrm{D}_{2 \mathrm{~h}}^{4}-\mathrm{Pban}$	$b-(110) ; a-(110)$	Φ_{2} for $l=2 n$	
$\tau_{3} \mathrm{D}_{2 \mathrm{~h}}^{18}-\mathrm{Ccma}$	$c-(001) ; m-(110)$	$D_{\text {dib }}^{16}-P 42 / n c m$	$c-(110) ; m-(100)$	$\mathrm{D}_{2 \mathrm{~h}}^{10}-P_{\text {cch }}$	$c_{1}-(110) ; c_{2}$-(110)	Φ, Φ for $l=2 n+1$	
$\tau_{4} \mathrm{D}_{2 \mathrm{~h}}^{17}-\mathrm{Cmcm}$	$m_{1}-(001),(\overline{100}) ; c_{2-(110)}$	$\mathrm{D}_{\text {d }}^{14} \sim P 4_{2} / \mathrm{mnm}$	$n-(110) ; m-(100),(001)$	$\mathrm{D}_{2 \mathrm{~b}}^{12}-\mathrm{Pnnm}$	n-(110), (110); m-(001)	Φ, Φ for $l=2 n$	
$\tau_{5} \mathrm{D}_{2 \mathrm{~h}}^{20}-\mathrm{Cccm}$	c-(001), (110); m-(110)	$\mathrm{D}_{4 \mathrm{~h}}^{12}-\mathrm{P} 4_{2} / \mathrm{nam}$	$n-(110),(001) ; m-(100)$	$\mathrm{D}_{2 \mathrm{l}}^{2}-P_{\text {nnn }}$	n-(110), (i10), (001).	Ф, $\overline{\text { ¢ }}$ for $l=2 n+1$	
$\tau_{6} \mathrm{D}_{2 \mathrm{~h}}^{21}-$ Cmma	m-(001), (110); a-(110)	$\mathrm{D}_{46 \mathrm{l}}^{1 \mathrm{O}} \longrightarrow \mathrm{P} 4_{2} / \mathrm{mcm}$	$m-(100),(001) ; n-(110)$	$\mathrm{D}_{2 \mathrm{~h}}^{3}-\mathrm{Pccm}$	$c-(110)$, (110); $m \\|(001)$	¢, $\bar{\Phi}$ for $l=2 n$	
$\tau_{7} \mathrm{D}_{2 \mathrm{~h}}^{18}-\mathrm{Ccma}$	$m_{1}-(001) ; c-(110)$	$\mathrm{D}_{\text {dh }}^{5} \sim P 4 / m b m$	$m-(100),(001) ; b-(110)$	$\mathrm{D}_{2 \mathrm{~h}}^{9}-\mathrm{Pbam}$	m-(001); $b-(110)$	$\begin{aligned} & \Psi_{z}, \Phi_{z} \text { for } l=2 n+1 \\ & \Psi_{z} \text { for } l=2 n \end{aligned}$	
${ }^{1} 8 \mathrm{D}_{2 \mathrm{~h}}^{17}$-Ccmm	m-(110), (001); $c-(\overline{1} 10)$	$\mathrm{D}_{\mathrm{bh}}^{7} \sim P 4 / n m m$	m-(110), (100); n-(001)	$\mathrm{D}_{2 \mathrm{~h}}^{13}-\mathrm{Pmmn}$	$m-(110),(1 \overline{1} 0) ; n-(001)$	-	

orientation of the axis. Many examples of more complex sequences can be considered using the results of table 2 . Some cases of superposition of different tilt systems are listed there. The symmetry changes in these cases can be found taking the direct product of two irreps, $\tau_{4} \otimes \tau_{7}$, for example. A similar analysis for $\mathrm{A}_{2} \mathrm{BX}_{4}(l=1)$ crystals was done earlier [11,12]. The direct products of irreps in table 2 are the results of our symmetry analysis due to the superpositions of different tilt systems, and should be checked by the group-theoretical method.

An additional question consists in performing the analysis of the lattice vibrations for crystals with a defiite prototype structure G_{0}. The aim of the analysis is the determination of the normal vibrations, which have equivalent symmetry properties to the G_{0} irreps involved, since they can be the condensing soft modes at the PT. For $\mathrm{A}_{2} \mathrm{BX}_{4}$ crystals the problem has been solved earlier [26,27]. It was shown that there exist librational modes at the X point of the zone that have the same symmetry as the τ_{3}, τ_{5} and τ_{7} irreps. On the other hand, the problem has not been solved for more complex crystals with $l>1$. However, it can be proposed that the irreps listed in table 3 (except for τ_{1} and τ_{8}) may induce in the layered crystals PTs of displacive type and, correspondingly, the soft modes may be found.

4.2. Comparison to experiments

Examples of well studied PTs in perovskite-like crystals with an even number of octahedral layers in the slabs are very limited, in spite of the large number of crystals belonging to the considered series, and specially to the anion-deficient related crystals. It was found that many representatives of the Aurivillius-type crystals are ferroelectrics and some of them present also PTs of unknown nature below the Curie temperature [31-33]. These PTs have not been investigated in detail. Their nature can be very different: positional order-disorder processes, ionic conductivity, non-stoichiometry, etc, but the mechanism of tilting cannot be excluded and it seems to be one of the most probable.

It was also found that many crystals of both the Aurivillius and Ruddlesden-Popper series have the unit-cell parameters a and b nearly equal to $\sqrt{2} a_{0}$ of G_{0} and $Z=4$, but x -ray powder data did not allow us to distinguish the type of distortion [31-33]. In these cases the distorted structures have been often considered as having an F-centred unit cell with $a \simeq b \simeq \sqrt{2} a_{0}$ and $c \simeq c_{0}$, which sometimes had additional polar distortions.

The structures of a few substances have been solved for single crystals. Three known examples, $\mathrm{Ca}_{3} \mathrm{Ti}_{2} \mathrm{O}_{7}$ [38], $\mathrm{Bi}_{3} \mathrm{TiNbO}_{9}$ [25] and $\mathrm{Bi}_{2} \mathrm{SrTa}_{2} \mathrm{O}_{9}$ [24] (table 4), have the same space group, $\mathrm{C}_{2 v}^{12}-\mathrm{Cmn} 2_{1}$, or $\mathrm{A} 2_{1} \mathrm{am}$ in the notations of [24] and [25]. This is the same polar group as was determined above (see section 3.4 and figure 7(b)) as the result of superposition of the $(\Phi \Phi 0)(\Phi \Phi 0)$ and $\left(00 \Psi_{z}\right)\left(00 \Psi_{z}\right)$ systems of tilts (table 2, No 6). The structures of the crystals mentioned above really contain the anion displacements corresponding to the mentioned system of tilts. Polar distortions due both to polar shifts of central atoms inside the octahedra and the displacements of A atoms in the perovskite-like slabs along the polar [110]0 direction are superimposed on the system of tilts. The values of Φ and Ψ_{z} angles are different because of the different irreps involved (see table 3). Their values are usually less than $10^{\circ}[24,25,38]$.

The crystal $\mathrm{Rb}_{3} \mathrm{Cd}_{2} \mathrm{Cl}_{7}$ has been studied with different experimental techniques such as heat capacity, birefringence and x-ray powder analysis [21]. Two phase transitions have been found from tetragonal (G_{0}) to orthorhombic and from orthorhombic to tetragonal phases upon lowering of temperature (see table 4). A partial crystallographic analysis, similar to the one performed in this work, has been done [21]. It was assumed that the sequence of PTs in the crystal corresponds to expression (1), i.e. it is induced by the τ_{4} irrep. The expression (2), as mentioned above (see tables 1 and 3), leads to the same point-symmetry changes

Table 4. Experimental data and proposed tilt systems in the structures of the studied perovskitelike crystals.

and to the same macroscopic characteristics of the PTs. Single-crystal x-ray analysis may distinguish between these two versions, deserving new experiments.

The data of Samaras et al [34] on some complex ferrites with the perovskite-like doublelayered structure (see figure 1(b)) may be in agreement with the PT sequence proposed in [21]. In one of the substances, $\mathrm{Sr}_{2} \mathrm{~Tb}_{2} \mathrm{Fe}_{2} \mathrm{O}_{7}$, the structure was slightly distorted and the Rietveld analysis of the data gave the best results for the $D_{4 h}^{14}-P 4_{2} / m n m$ space group, which is the G_{2} phase in expression (1). The atomic coordinates published in [34] show that the main distortions are the octahedral tilts of the proper system. According to the 'model structure' shown in figure 5(c) the oxygen atoms O (1) linking the octahedra between $(001)_{0}$ layers in a slab and the $\mathrm{O}(2)$ ones on the external tops of the slabs have shifts along [110] equal in value and opposite in sense. One half of the O atoms in the planes of the octahedral layers, $\left(O(3)\right.$ in $\left.G_{o}\right)$, are shifted along $\pm z_{0}$, the other half do not change their coordinates, in a first approximation. Just these displacements are the largest ones in the structure of $\mathrm{SrTb}_{2} \mathrm{Fe}_{2} \mathrm{O}_{7}$ [34]. The displacements by $\pm \Delta z$ of Fe atoms from the octahedral centres provide evidence of the antiferroelectric nature of the crystal structure. It is worthwhile to mention also the possible structural PTs at high temperature present in this crystal, in accordance with the expected PT sequence (1).

The main positional changes of the anions forming the octahedra in layered perovskitelike crystals can be found in a similar way for any distorted phase listed in tables 1 and 2. In many cases the directions of the A-cation displacements can be found by taking account of the site symmetry and the form of the anion polyhedra around these ions in the distorted structure. We will consider as an example the first PT from (1): $\mathrm{D}_{4 \mathrm{~h}}^{17} \rightarrow \mathrm{D}_{2 \mathrm{~h}}^{17}$ (see table 1, line 13 and figure 6(b)). This corresponds to two Φ-tilt components in the plane of the two layered octahedral slabs for an $\mathrm{A}_{3} \mathrm{~B}_{2} \mathrm{X}_{7}$ crystal. There exist two types of A atom in the initial phase G_{0}. Atoms A_{1} are located inside the slabs in positions with $Z=12$ having the site symmetry (a) $4 / \mathrm{mmm}$. According to international tables for x -ray crystallography it is convenient to accept this point as the origin of the coordinate system: (000). A_{2} atoms are located between slabs in positions (e) 4 mm with $Z=9$ and have the coordinates $\left(00 z_{0}\right)$. After the PT to $G_{1}=C \mathrm{mcm}$ a new coordinate system appears, $z_{0} \rightarrow x_{1},[110]_{0} \rightarrow y_{1},\left[1 \overline{1}_{0}\right]_{0} \rightarrow z_{1}$, and the position of the origin also changes. Atoms A_{1} and A_{2} are located now in positions with site symmetry $m m$ and m correspondingly. This conclusion can be easily made from the analysis of displacements for X atoms in their surroundings (see figure 6(b)). A_{1} atoms are located now on the intersection of the two m planes and may change their coordinate $\pm \Delta y_{1}$ along this line; A_{2} atoms are located on an m plane orthogonal to x_{1} and may have displacements $\pm \Delta y_{1}$ and $\pm \Delta z_{1}$ in the plane. These displacements of A atoms plus those for two types of X atom can be used in the process
of structural analysis as free parameters of the trial model. X-ray- or neutron-diffraction experiments on powder samples are frequently performed now in the course of the search for new representatives of layered crystals, specially as ETSSC and related materials [3941]. It is well known that some series of HTSCs belong to anion-deficient versions of the Aurivillius and Ruddlesden-Popper ones [35,39]. In the course of structural research many examples have been found where the atomic positions have shifted to the partially occupied ones and have led to substantial lowering of the reliability (R) factors (see, for example, [36]).

At least in some cases the trial models could help to confirm or exclude one of the possible reasons for this peculiarity. Also, one may suspect that some other representatives of layered crystals with tolerance factors beyond the stability range of G_{0} (see [42]) will have distorted structures in some temperature region.

5. Summary

The crystallographic analysis of structural distortions caused by octahedral tilts in multilayered perovskite-like crystals with even octahedral layers in slabs has been performed. Two series of these crystals were considered: Aurivillius and Ruddlesden-Popper ones [17, 18] (figure 1). Four kinds of octahedral tilt are possible in the multilayered perovskitelike slabs: Ψ, Φ, Ψ_{z}, and Φ_{z} (figure 2).

An artificial method to simplify the symmetry analysis has been used. This allowed us to determine the symmetry of the distorted phases due to both a single kind of tilt (table 1) and to superpositions of different tilts along the unit-cell axis of the prototype structure $\mathrm{G}_{0}=\mathrm{D}_{4 \mathrm{~b}}^{17}=I 4 / \mathrm{mmm}$ (table 2). It was shown that many polar distortions appear when Φ and Ψ tilts are superimposed. In particular, for the $\left(\Phi \Phi \Psi_{z}\right)\left(\Phi \Phi \Psi_{z}\right)$ system of tilts (see No 6 in table 2), the group obtained was $C m c 2_{1}(Z=4)$. The same group has been found in some crystals with $l=2$ (table 4). These crystals are pyroelectrics and some additional polar distortions are superimposed on the mentioned system of tilts. These polar distortions alone can never lead to the complex tilt system: superpositions of the G_{o} group and one of the polar vectors directed along [110] $]_{0}$ can never lead to the multiplication of the unit cell. However, a combination of the polar mode and one of the octahedral rotational modes can induce another octahedral rotational mode. Which one is the softest mode cannot be determined from group theory. Nobody knows at present whether these three modes are condensed at the same temperature.

The data published earlier [9-12] for the structural distortions due to tilts in $\mathrm{A}_{2} \mathrm{BX}_{4}$ crystals with $\mathrm{K}_{2} \mathrm{MgF}_{4}$-type structure ($l=1$) have been reproduced also for crystals with $(2 n+1)$-layered octahedral slabs. It is easy to show that the symmetry of G_{i} due to Ψ, Φ and $\Psi_{z} \equiv \theta$ tilts and their superpositions does not change in the structures with $2 n+1$ layered slabs. Moreover, Φ_{z} tilts can appear in these crystals and lead to the same symmetry changes as the Ψ_{z} tilts. This means that both tilt systems belong to the same irrep τ_{7} of G_{0} (see table 3). In $\mathrm{A}_{2} \mathrm{BX}_{4}$ crystals the irrep τ_{7} is met three times at the X point of the Brillouin zone [26,27]. Therefore one may expect that in crystals with multilayered slabs few librational modes will have the same symmetry τ_{7}. In this case these modes should interact and appear together in crystals with $l=2 n+1$. In crystals with $l=2 n$ these tilts (Ψ_{z} and Φ_{z}) belong to different irreps (table 3). According to the published structural data, the superposition of the Ψ_{z} and Φ_{z} tilts takes place in the $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$ crystal belonging to Aurivillius phases with $l=3$ [22,24]. It could be mentioned here that it will be necessary to consider and determine the symmetry vectors for lattice modes in the future.

On the base of the system of tilts presented in tables 1 and 2 , the directions and signs of atomic displacements can be found for all anions with respect to their sites in G_{0}. In many cases the displacements of A cations can also be estimated qualitatively. These displacements, combined with the unit-cell parameters and localizations of the symmetry elements in the G_{i} space group, form the set of data that was called above the 'trial model' for the structural analysis of the layered perovskite-like crystals. Some series of HTSCs $\left(\mathrm{T}_{2}\right.$ and Bi_{2} series, for example) are the anion-deficient versions of the considered crystals with $l=2 n, l=2 n+1$ and $\mathrm{G}_{0}=I 4 / \mathrm{mmm}$. We hope that the results of this paper will be useful for the structural analysis of new layered crystals.

Acknowledgments

One of the authors (KA) acknowledges the Caja de Ahorros de la Inmaculada and CSIC for the financial support of his stay at ICMA in Zaragoza. This work was also supported partially by the Russian Foundation for Fundamental Research (project N93-2-2425) and by the Spanish CICYT (project PB 92-1077 and project MAT 93-0240-C04-04).

References

[1] Glazer A M 1972 Acta Crystallogr. B 28 3384; 1975 Acta Crystallogr. A 31256
[2] Aleksandrov K S 1976 Ferroelectrics 14 801; 1978 Ferroelectrics 20 61; 1976 Kristallographia 21249
[3] Aleksandrov K S, Anistratov A T, Beznosikov B V and Fedoseeva N V 1981 Phuse Transitions in ABX 3 Crystals of Halide Compounds (Novosibirsk: Nauka) (in Russian)
[4] Aleksandrov K S and Misjul'S V 1981 Kristallagraphia 261074
[5] Armstrong R 1980 Phys. Rep. 57343
[6] Sutton M and Armstrong R 1983 Phys. Rev. B 271937
[7] Deblieck R, Van Tandeloo G, Van Landuytz J and Amelinckx S 1985 Acta Crystallogr. B 41319
[8] Aleksandrov K S 1987 Kristallographia 32347
[9] Aleksandrov K S 1987 Kristallographia 32937
[10] Aleksandrov K S, Beznosikov B V and Misjul'S V 1987 Phys. Status Solidi a 104529
[11] Hatch D M and Stokes H T 1987 Phys. Rev. 358509
[12] Hatch D M, Stokes H T, Aleksandrov K S and Misjul'S V 1989 Phys. Rev. B 399282
[13] Bulou A and Nouet J 1982 J. Phys. C; Solid State Phys. 15183
[14] Aleksandroy K S, Emelyanova H S, Misjul'S V and Kokoy J T 1985 Solid State Commun. 53835
[15] Schafer A D, Shabanov V F and Aleksandrov K S 1986 JETP Lett. 43 49!
[16] Axe J, Mouden A, Helmwein D, Cox D, Moharity K, Moodenbauch A and Xu X 1989 Phys. Rev. Lett. 62 2751
[17] Ruddelsden S N and Popper P 1957 Acta Crystallogr. 10 538; 1958 Acta Crystallogr. 1154
[18] Aurivillius B 1949 Ark. Kemi 1 463, 499; 1950 Ark. Kemi 2519
[19] Kovalev O V 1986 Irreducible and Induced Representations and Co-representations of Fedorov Groups (Moscow: Nauka)
[20] Miller S C and Love W F 1967 Tables of Irreducible Representations of Space Groups and Co-representations of Magnetic Space Groups (Boulder, CO: Pruett)
[21] Aleksandrov K S, Kokov J T, Melnivova S V, Misjul' S V and Flerov J N 1988 Fiz. Tverd. Tela 303652
[22] Withers R, Thompson J and Rae A 1991 J. Solid State Chem. 94404
[23] Thompson J, Rae A. D. Withers R and Craig D 1991 Acta Crystallogr. B 47174
[24] Rae A D, Thompson J, Withers R and Willis A 1990 Acta Crystallogr. B 46474
[25] Rae D. Thompson J and Withers R 1992 Acta Crystallogr. B 48418
[26] Petzelt J 1975 J. Phys. Chem. Solids 361005
[27] Geick R and Strobel K 1977 J. Phys. C: Solid State Phys. 104221
[28] Naish V and Syromjatnikov B 1977 Manuscript deposited with All-Union Inst. of Scientific Information No 486
[29] Landau L D and Lifshitz E M 1980 Statistical Physics (New York: Pergamon) part I
[30] Aleksandrov K, Beznosikov B and Misjuhl'S V 1986 Institute of Physics, Siberian Department USSR Academy of Sciences Reprint N381F
[31] Subbarao E 1973 Ferroelectrics 5267
[32] Gungaly P and Rao C N R 1984 J. Solid State Chem. 53193
[33] Smolensky G, Bokov V, Isupov V, Krainik N and Sokolov A 1984 Ferroelectric: and Related Materials (New York: Gordon and Breach)
[34] Samaras D, Collomb A and Joubert J 1973 J. Solid State Chem. 7337
[35] Raveau B, Mishel C and Hervieu B 1990 Studies of High-temperature Superconductivity vol 2, ed A Narlikar (New York: Nova) $p 1$
[36] Fu W and Helmholdt R 1992 Mater. Res. Bull. 271371
[37] Kim J S, Kawaji H, Jtoh M and Wakammta T 1992 Mater. Res. Bull. 271193
[38] Elcombe M, Kisi E, Hawkins K, White T, Goodman P and Matheson S 1991 Actu Crystallegr. B 47305
[39] Feiner J, Hechel D, Yakoby E, Hilscher G, Holubar T and Schaudy G. 1993 Phys. Rev. B 4712190
[40] Frit B and Mercurio J 1992 J. Alloys Compounds 18827
[41] Stokes H T and Hatch D M 1988 Isotropy Subgroups of the 230 Crystallographic Space Groups (Singapore: World Scientific)
[42] Poix P 1980 J. Solid Stare Chem. 3195

